疲勞強度是指材料在無限多次交變載荷作用下會產生破壞的**應力,稱為疲勞強度或疲勞極限。實際上,金屬材料并不可能作無限多次交變載荷試驗。一般試驗時規定,鋼在經受10ˇ7次、非鐵(有色)金屬材料經受10ˇ8次交變載荷作用時不產生斷裂時的**應力稱為疲勞強度。當施加的交變應力是對稱循環應力時,所得的疲勞強度用σ–1表示。
疲勞破壞是機械零件失效的主要原因之一。據統計,在機械零件失效中大約有80%以上屬于疲勞破壞,而且疲勞破壞前沒有明顯的變形,所以疲勞破壞經常造成重大事故,所以對于軸、齒輪、軸承、葉片、彈簧等承受交變載荷的零件要選擇疲勞強度較好的材料來制造。
常規疲勞強度計算是以名義應力為基礎的,可分為無限壽命計算和有限壽命計算。零件的疲勞壽命與零件的應力、應變水平有關,它們之間的關系可以用應力一壽命曲線(σ-N曲線)和應變一壽命曲線(δ-Ν曲線)表示。應力一壽命曲線和應變一壽命曲線,統稱為S-N曲線。根據試驗可得其數學表達式:
σmN=C
式中:N應力循環數;
m、C材料常數。
在疲勞試驗中,實際零件尺寸和表面狀態與試樣有差異,常存在由圓角、鍵槽等引起的應力集中,所以,在使用時必須引入應力集中系數K、尺寸系數ε和表面系數β。
疲勞的機制可以分成三個相互關聯的過程:
疲勞強度1. 裂紋產生
2. 裂紋延伸
3. 斷裂
FEA應力分析可以預測裂紋的產生。許多其他技術,包括動態非線性有限元分析可以研究與裂紋的延伸相關的應變問題。由于設計工程師**希望從一開始就防止疲勞裂紋的出現,確定材料的疲勞強度。
裂紋開始出現的時間以及裂紋增長到足以導致零部件失效的時間由下面兩個主要因素決定:零部件的材料和應力場。材料疲勞測試方法可以追溯到19 世紀,由August Wöhler **次系統地提出并進行了疲勞研究。標準實驗室測試采用周期性載荷,例如旋轉彎曲、懸臂彎曲、軸向推拉以及扭轉循環。科學家和工程師將通過此類測試獲得的數據繪制到圖表上,得出每類應力與導致失效的周期重復次數之間的關系,或稱S-N曲線。工程師可以從S-N 曲線中得出在特定周期數下材料可以承受的應力水平。
該曲線分為高周疲勞和低周疲勞兩個部分。一般來說,低周疲勞發生在10,000 個周期之內。曲線的形狀取決于所測試材料的類型。某些材料,例如低碳鋼,在特定應力水平(稱為耐疲勞度或疲勞極限)下的曲線比較平緩。不含鐵的材料沒有耐疲勞度極限。
大體來說,只要在設計中注意應用應力不超過已知的耐疲勞度極限,零部件一般不會在工作中出現失效。但是,耐疲勞度極限的計算不能解決可能導致局部應力集中的問題,即應力水平看起來在正常的"安全"極限以內,但仍可能導致裂紋的問題。
與通過旋轉彎曲測試確定的結果相同,疲勞載荷歷史可以提供關于平均應力和交替應力的信息。測試顯示,裂紋延伸的速度與載荷周期和載荷平均應力的應力比率有關。裂紋僅在張力載荷下才會延伸。因此,即使載荷周期在裂紋區域產生壓縮應力,也不會導致更大的損壞。但是,如果平均應力顯示整個應力周期都是張力,則整個周期都會導致損壞。
許多工況載荷歷史中都會有非零的平均應力。人們發明了三種平均應力修正方法,可以省去必須在不同平均應力下進行疲勞測試的麻煩:
Goodman 方法- 通常適用于脆性材料。
Gerber 方法- 通常適用于韌性材料。
Soderberg 方法- 通常**保守。
這三種方法都只能應用于所有相關聯的S-N 曲線都基于**反轉載荷的情況。而且,只有所應用疲勞載荷周期的平均應力與應力范圍相比很大時,修正才有意義。實驗數據顯示,失效判據位于Goodman 曲線和Gerber 曲線之間。這樣,就需要一種實用的方法基于這兩種方法并使用**保守的結果來計算失效。
疲勞壽命的計算方法
對每個設計進行物理測試明顯是不現實的。在多數應用中,疲勞安全壽命設計需要預測零部件的疲勞壽命,從而確定預測的工況載荷和材料。計算機輔助工程(CAE) 程序使用三種主要方法確定總體疲勞壽命。這些方法是:
·應力壽命方法(SN)
這種方法僅基于應力水平,只使用Wöhler 方法。盡管不適用于包含塑性部位的零部件,低周疲勞的**度也乏善可陳,但這種方法**容易實施,有豐富的數據可供使用,并且在高周疲勞中有良好的效果。
· 應變壽命(EN)
這種方法可以對局部區域的塑性變形進行更詳細的分析,非常適合低周疲勞應用。但是,結果存在一些不確性。
· 線性彈性破壞力學(LEFM)
這種方法假設裂縫已經存在并且被檢測到,然后根據應力強度預測裂縫的增長。借助計算機代碼和定期檢查,這種方法對大型結構很實用。由于易于實施并且有大量的材料數據可用,SN 是**常用的方法。
設計人員使用SN 方法計算疲勞壽命
在計算疲勞壽命時,應考慮等幅載荷和變幅載荷。
這種方法假設零部件在恒定的幅度、恒定的平均應力載荷周期下工作。通過使用SN 曲線,設計人員可以快速計算導致零部件發生失效的此類周期數量。而對于零部件需要在多種載荷下工作的情況,則可采用Miner 規則來計算每種載荷情況的損壞結果,并將所有這些損壞結果合并起來獲得一個總體的破壞值。
其結果稱為"損壞因子",是一個失效分數值。零部件在D = 1.0 時發生失效,因此,如果D = 0.35,該零部件的壽命已經消耗了35%。這一理論還認為由應力周期導致的損壞與損壞在載荷歷史的哪個位置發生無關,并且損壞積累速度與應力水平無關。
這種方法假設零部件在恒定的幅度、恒定的平均應力載荷周期下工作。通過使用SN 曲線,設計人員可以快速計算導致零部件發生失效的此類周期數量。
而對于零部件需要在多種載荷下工作的情況,則可采用Miner 規則來計算每種載荷情況的損壞結果,并將所有這些損壞結果合并起來獲得一個總體的破壞值。其結果稱為"損壞因子",是一個失效分數值。零部件在D = 1.0 時發生失效,因此,如果D = 0.35,該零部件的壽命已經消耗了35%。這一理論還認為由應力周期導致的損壞與損壞在載荷歷史的哪個位置發生無關,并且損壞積累速度與應力水平無關。
在真實的環境條件下,多數零部件承載的載荷歷史是不斷變化的,幅度和平均應力都是如此。因此,更為通用和現實的方法需要考慮變幅載荷,在這種情況下,應力盡管隨著時間循環反復,但其幅度是變化的,這就有可能將應力分解成載荷"塊"。在處理這種類型的載荷時,工程師使用一種稱為"雨流法計數"的技術。附錄B 討論如何研究FEA 疲勞結果,它就雨流法計數提供了更多信息。
在通過SN 方法研究疲勞方面,FEA 提供了一些非常**的工具,這是因為輸入由線彈性應力場組成,并且FEA 能夠處理多種載荷情況交互作用的可能情形。如果要計算**壞情況的載荷環境(這是一種典型方法),系統可以提供大量不同的疲勞計算結果,包括壽命周期圖、破壞圖以及安全系數圖。此外,FEA 可以提供較小主要交替應力除以較大主要交替應力的比率的圖解(稱為雙軸性指示圖),以及雨流矩陣圖。后者是一個3D 直方圖,其中的X 和Y 軸代表交替應力和平均應力,Z 軸代表每個箱所計的周期數。
|